Concrete, modern style, craps out within 30-50 years, depending on the weather, while concrete, Roman style, lasts millennia, even when submerged, thanks to a secret sauce just beginning to be understood thanks to esoteric tech of the sophisticated kind.
He (
Pliny the elder)
might be pleased, then, to see an ancient technology that he himself admired taking on a modern relevance and novelty. Who, Pliny wondered, could help but be surprised at the way the Roman harbor infrastructure, made from a mix of lime and volcanic ash, overcomes entropy, “forming a barrier against the waves of the sea, becoming changed into stone the moment of its immersion, and increasing in hardness from day to day—more particularly when mixed with the cement of Cumae,” an ancient city in Naples?
So she’s been working backwards. In “Unlocking the secrets of Al-tobermorite in Roman seawater concrete,” a study she and her colleagues published in 2013, they confirmed, via trace element analyses at the Advanced Light Source, an X-ray synchrotron at the Lawrence Berkeley National Laboratory in California, that drill cores of a 2000-year-old block submerged in the Bay of Pozzuoli near Naples came “from Flegrean Fields volcanic district, as described in ancient Roman texts.” The samples contained aluminum tobermorite, a rare mineral and not an ingredient in conventional concrete, which accounted for their great durability and strength. In another study published this month, the researchers found that the aluminum tobermorite grew out of a silicate mineral common to volcanic ash, called phillipsite, spurred by ocean contact. “We’re looking at a system that thrives in open chemical exchange with seawater,” Jackson said.
No comments:
Post a Comment