"When you search Google Images, you type in a term and it gives you returns from pages that have that text in them. We want to be able to upload an image and use it as a model for finding similar images," Milanfar said.
Milanfar and Seo developed an algorithm that enables automated recognition of both objects in images and actions in videos. The software analyzes an image or short movie and characterizes the most important constituents of the object or action represented. It can then search for those constituents in image and video databases. The researchers presented their new methods at the IEEE International Conference on Computer Vision in September and in a recent paper published by the IEEE Transcripts on Pattern Analysis and Machine Intelligence.
Existing technology can search for and distinguish individual objects in a database of images only after running through a time-consuming training phase. "If you're looking for images of bicycles, for instance, current algorithms have to be shown pictures of hundreds, if not thousands, of bicycles in order to be able to recognize a bicycle," Milanfar said..
With his new software, a single photo of a bicycle at night can be used as a template to locate pictures of bicycles in full sunlight, in the foreground or the background. It works under a wide range of image qualities and lighting discrepancies. The template image or the target image can be sharp or out-of-focus, clean or noisy. To Milanfar's software, a bicycle is a bicycle.
Similarly, a person riding a bicycle is a person riding a bicycle. Video of Lance Armstrong in the Tour de France can be used to find clips of men and women riding along an ordinary street.
The intelligent web is coming.
No comments:
Post a Comment