The Parker Solar Probe is earning its pay in spades as new discoveries keep coming in as Parker continues it's ever closer orbits around the sun.
Cosmic dust, the remnants of epic crashes from which planets, stars, comets and asteroids were born after the Big Bang, is floating all over our solar system. It gets everywhere like glitter. Suspected for years by scientists, the dust-free zone is thought to be a region relatively close to the Sun where the dust would be roasted by extreme solar temperatures, which would eventually morph it into a gas and leave behind a clearer piece of sky. WISPR found that space dust in the proximity of the Sun starts to thin out at about 7 million miles away. As the probe approached, it saw even less dust at 4 million miles.
It gets better.
Parker imaged the corona during its first two ten-day perihelion passes, the perihelion being the point in its orbit closest to the sun. It had quite a view. While it could see things telescopes and satellites can see from further out in space and even from Earth, it was able to see the decrease in F-coronal light intensity that Howard and Vourlidas mentioned, which is indicative of a dust-free zone. If there are multiple dust-free or minimal-dust zones around the sun, then that means one thing—rings of dust in between.
There's more ...
Among the findings are new understandings of how the Sun's constant outflow of solar wind behaves. Seen near Earth, the solar wind plasma appears to be a relatively uniform flow – one that can interact with our planet's natural magnetic field and cause space weather effects that interfere with technology. Instead of that flow, near the Sun, Parker's observations reveal a dynamic and highly structured system, similar to that of an estuary that serves as a transition zone as a river flows into the ocean. For the first time, scientists are able to study the solar wind from its source, the Sun's corona, similar to how one might observe the stream that serves as the source of a river. This provides a much different perspective as compared to studying the solar wind were its flow impacts Earth.
How cool is that?
No comments:
Post a Comment