Wednesday, January 21, 2015

Catching a wave


Basic research, the engine that enables man to better understand the reality in which we all live, matters because, in many instances, practical implementation of such work may not reach fruition for many years. See Quantum Mechanics as an example. To this end, scientists are doing some really creative studies into the inner workings of light with implications that stagger the imagination.

Some physical principles have been considered immutable since the time of Isaac Newton: Light always travels in straight lines. No physical object can change its speed unless some outside force acts on it.

Not so fast, says a new generation of physicists: While the underlying physical laws haven't changed, new ways of "tricking" those laws to permit seemingly impossible actions have begun to appear. For example, work that began in 2007 proved that under special conditions, light could be made to move along a curved trajectory—a finding that is already beginning to find some practical applications.

Implications:

Now, in a new variation on the methods used to bend light, physicists at MIT and Israel's Technion have found that subatomic particles can be induced to speed up all by themselves, almost to the speed of light, without the application of any external forces. The same underlying principle could also be used to extend the lifetime of some unstable isotopes, perhaps opening up new avenues of research in basic particle physics.

It turns out, according to further analysis, that this self-acceleration produces effects that are associated with relativity theory: It is a variation on the dilation of time and contraction of space, effects predicted by Albert Einstein to take place when objects move close to the speed of light. An example of this is Einstein's famous twin paradox, in which a twin who travels at high speed in a rocket ages more slowly than another twin who remains on Earth.

Interstellar anyone? :)

No comments: